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Calorimetry
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dT/dQ is measured in the DTA

Calorimetry dQ/dT is measured in the DSC

How to build a scanning calorimeter Difference between DSC and DTA principle

What is needed?
One or Two Adiabatic/Isolated Cells
Thermocouples, T
Heating rate, dQ/dt
Mass, m

= =

Simplest approach and useful for very low or very high temperatures is differential thermal analysis DTA
DTA is a simple design for difficult environments
Two cells heated at same rate and the difference in temperature is recorded

Differences in heat capacity and latent heats create differences in temperatures through transitions.



Measure the Temperature
Seebeck Effect: Thermocouple

Electrons (or holes) flow from the hot side where they have high kinetic energy to the cold side where they
have less kinetic energy. They will spend more time in the cold side, something like condensing in the cold
side. This effect is different in magnitude for different metals or semiconductors. The difference in potential
at the cold side between two metals is proportional to the temperature. (Similar to thermophoretic sampling.)
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FIG. 1. (Left) Schematic of the calorimeter. The sample is mounted on substrate
A, and the other nearly identical Pt-100 (substrate B) serves as the reference.
An external temperature controller controls the temperature of the thermal reser-
voir through a temperature sensor and a cartridge heater, which is placed inside
the thermal bath. (Right) Equivalent electrical circuit of the calorimeter based on
analogy between Biot-Fourier and Ohm's law.



Cryostat

Use liquid He or a
He refrigerator
4.2K boiling point




Calorimetry

dQ/ dt= Cp dT/dt + AHtransitions

AQ - Cp (Tf“ Ti)+ AI_Itransitions
Tf - Ti + (AQ - AHtransitions)/ Cp
AQ = (dQ/dt) t

dT/dQ is measured in the DTA
dQ/dt = (dT/dt)/(dT/dQ)

dQ/dT is measured in the DSC
dQ/dt = (dQ/dT) (dT/dt)



Modulated DSC

Figure 1: HEAT FLUX DSC SCHEMATIC
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Figure 2: MDSC HEATING PROFILE
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In the example shown in Figure 2, the underlying heating rate is 1°C/minute, the modulation period is 30 seconds, and
the modulation amplitude is £1°C. This set of conditions results in a sinusoidal heating profile where the instantaneous
heating rate varies between +13.44°C/minute and -11.54°C/minute (i.e., cooling occurs during a portion of the
modulation). Although the actual sample temperature changes in a sinusoidal fashion during this process (Figure 3),
the analyzed signals are ultimately plotted versus the linear average temperature which is calculated from the average
value as measured by the sample thermocouple (essentially the dashed line in Figure 2). [Note: As in conventional
DSC, MDSC can also be run in a cooling rather than heating mode.]
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Cpp + f(T,t)
dt

% = total heat flow

Cp = heat capacity
f = heating rate

where:

Figure 2:

MDSC HEATING PROFILE
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f(T,t)= heat flow from kinetic (absolute temperature and time dependent) processes

In the example shown in Figure 2, the underlying heating rate is 1°C/minute, the modulation period is 30 seconds, and
the modulation amplitude is £1°C. This set of conditions results in a sinusoidal heating profile where the instantaneous
heating rate varies between +13.44°C/minute and -11.54°C/minute (i.e., cooling occurs during a portion of the
modulation). Although the actual sample temperature changes in a sinusoidal fashion during this process (Figure 3),
the analyzed signals are ultimately plotted versus the linear average temperature which is calculated from the average
value as measured by the sample thermocouple (essentially the dashed line in Figure 2). [Note: As in conventional
DSC, MDSC can also be run in a cooling rather than heating mode.]



Figure 7: MDSC RAW SIGNALS
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Figure 8: DSC Cp MEASUREMENT
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Figure 9: MDSC Cp MEASUREMENT
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Sample: SAPPHIRE [) ES [: File: C:DSC-CP.02
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Figure 10: DSC & MDSC Cp MEASUREMENTS
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Figure 11: REVERSING HEAT FLOW FROM MDSC RAW SIGNALS
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Sample: PET; QUENCHED FROM 280°C D S C File: C:N6.14
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Figure 12: TOTAL HEAT FLOW FROM MDSC RAW SIGNALS
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Figure 12: TOTAL HEAT FLOW FROM MDSC RAW SIGNALS

(/'7 Sample: PET; QUENCHED FROM 280°C [] ES (: File: C:N6.14 ﬂ\\

Size: 5.5000 mg Operator: APP LAB
Method: MDSC 1/100 @ 2°C/MIN
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The total heat flow in MDSC is calculated as the average value of the raw modulated heat flow signal (Figure 12) using
a Fourier Transformation analysis. This approach is used to continuously calculate the average value rather than using
only the two points per cycle (maximum and minimum). Use of the Fourier Transformation provides much higher
resolutuion because up to 5 points per second can be calculated for both the average and amplitude values. Note: és
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Figure 13: QUENCH COOLED PET - MODULATED DSC

/ Sample: PET; QUENCHED FROM 280°C D S C
Size: 5.5000 mg
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Figure 14: PHASE LAG
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Figure 15: HEAT FLOW PHASE CONTRIBUTION
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Figure 16: PHASE-CORRECTED HEAT FLOW SIGNALS
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Micro Calorimetry (isothermal shown)
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Heat flow vs. time for the thermal decomposition of 80 &

mass% CHP (cumene hydroperoxide) at a series of

temperatures. CHP is an industrial chemical intermediate

and polymerization initiator which is a documented fire

and explosion hazard. According to the authors, neither
differential scanning calorimetry or adiabatic calorimetry
was sensitive enough to capture these data (from Chen et

al. 2008 with publisher permission).
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Heat flow vs. time for the treatment of fibroblasts in o
culture in a stirred stainless steel ampoule. A =
introduction of the ampoule into the measurement
position, with metabolic heat flow then reaching an
equilibrium level. B = injection of sodium dodecyl sulfate
(SDS) which produced sharp heat flow peaks related to
exothermic diluton of the SDS and lysis of the fibroblasts.
After lysis, the heat flow rate returned near zero since
fibroblast metabolism had ceased. dQ/dt = the metabolic
heat flow of the fibroblasts in culture (from Liu, et al. 2007
with publisher permission). Fig. 5
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Example of how growth-related heat flow vs. time data ©°
from bacteria in culture in a given medium in a sealed
ampoule reflect the sequence of metabolic activities
taking place. The bacteria move on to consuming less
efficient carbon sources as more efficient sources are
depleted. Deconvolution of the data yielded the peaks
shown which can be assigned to the metabolic modes
shown. This sequence for the E. coli bacteria employed is
well known in the field of microbiology (from Braissant et
al. 2010 with publisher permission). Fig.6

Detection

lllustration of how IMC time of detection of the presence of -
bacteria depends on the initial number of bacteria present
(CFU), the sensitivity of the instrument and the level of heat
flow above baseline that is selected as indicating bacterial
growth. CFU = colony forming unit. (adapted from Braissant
et al. 2010 with publisher permission). Fig.7



Thermogravimetric Analysis (TGA)




Thermogravimetric Analysis (TGA)
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Figure 3. TGA results for epoxy-glass powder
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Membrane Osmometry

In an ideally dilute solution, van ‘t Hoff's law of osmotic pressure can be used to calculate M, from
osmotic pressure.!']

. II el &
lim (—) = —
c—0 C Mn
M,,, number average molecular weight, mass/mole
R, gas constant

T, absolute temperature, typically Kelvin

¢, concentration of polymer, mass/volume

II, osmotic pressure

— L L 3 Y
c——RT(M‘-i-Agcﬁ- )
Van der Waals Equation P =TT

RT _a
V—-b vy?2

1 a Van der Waals
Ay = —(b - —) b = Excluded volume P=
M? RT _ . ) _
a = attractive potential




Archimedes Method for Density

density of object weight

density of fluid weight of displaced fluid

Helium Pycnometry

Helium density

Boyle’s Law (P;V; =P,V,)

Measure pressure change to get volume
Weigh sample

“Open pore” density

Vexpansion chamber D s Msample

Vsample = Vsample chamber ~— p1



Density Gradient Column
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Mercury Dilatometry for Thermal Expansion Coefficient, o




Abbe Refractometer

sion of free volume above 7. Under the assumption
of a spherical molecule, the density p can be related
to the index of refraction n by using the Lorentz-
Lorenz equation,

(n?--1)

3 € (2)

where C 1s the specific refraction, which depends on
the polarizability of the molecules ( temperature in-
dependent ).’ Equation (2) results in a monotoni-
cally decreasing index of refraction with decreasing
density.

®™M



Index (and thickness) of thin films Ellipsometer

Light source Detector

Polarizer Analyzer

Compensator Compensator
(optional) (optional)
Sample
Schematic setup of an ellipsometry experiment &J
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The illustration to the right represents a generic volumetric

physical adsorption analyzer in its most elementary form. The

critical components are:

1) Analysis manifold of accurately known volume and
temperature

2) Vacuum system with valve to manifold

3) Source of adsorptive gas (typically, N,) with
valve to manifold

4) Pressure transducer and temperature sensor

5) Means for recording the signal from the transducer and
temperature sensor

6) A sample tube of precisely known free or void-space

7) Sample tube connected to analysis manifold

8) Means to reduce the temperature of the sample when
required, (typically to liquid nitrogen (LN,) temperature).

Preparation

The adsorptive gas supply valve (3) is closed and the vacuum
(2) and sample (7) valves are open allowing the manifold and
sample tube to be evacuated. The sample tube is not in the
cold bath, so the sample is at ambient temperature.

When the necessary vacuum is achieved, valves 2 and 7 close
and the cold bath is raised, cooling the sample to the analysis
temperature.

Charging the Manifold

Valve 3 is opened momentarily to charge the manifold to a
pressure (P _) slightly above vacuum, preparing the instrument
to dispense a dose of adsorptive onto the sample. The quantity
of gas (n_) in the manifold can be determined from the univer-
sal gas law

Pme

RT

m

Surfaces:
Gas Adsorption

Dosing

Valve 7 is opened allowing some of the gas to enter the
sample tube.

Equilibration

Some quantity of gas (n_, ) will be adsorbed by the sample
and removed from the gas phase. Pressure is monitored un-
til it stabilizes, indicating adsorption has equilibrated. The
equilibration pressure (P, )is recorded.

Quantity Adsorbed

The quantity of gas (n,) remaining in the combined manifold
and sample tube volume (V_ +V ) can be calculated from
the universal gas law. This is complicated by the vertical
temperature profile in the sample tube, one portion essential-
ly being at ambient temperature and another portion being at
the temperature of the cold bath typically LN,.

The calculation of n_is made traceable by a free-space mea-
surement typically performed prior to the analysis and which
characterizes the sample tube volume in regard to ‘warm’
and ‘cold’ volumes. Once n_is determined, the quantity of
gas adsorbed by the sample at P_is

This establishes the point on the isotherm (P, n_,). Valve 7
closes and valve 3 opens, and the manifold is charged to a
pressure slightly higher than P _after which the dosing and

isplay a menu 1 processes are repeated.

1) Preparation

(1) Analysis Manifold (3) Adsorptive Gas (nitrogen)
(evacuated) and Valve
(2) Vacuum

Temperature Sensor
(4) and
Pressure Transducer

Pump and Valve

(7) Sample Valve

(5) Signal Recorder

(6) Sample Tube
(evacuated)

2) Charging the
Manifold

[ Vacuum

-
Manifold Volume =V w

Pressure =P
Sample Tube
Volume=V_
Pressure=P, =
i N

(8) Cold Bath‘

Reservoir
(down position)

(2)

Vacuum ‘

Pressure =P _

‘Warm’ Volume

3) Sample Dosing
EL

Pressure Equilibration
‘Cold’ Volume



Quantity Adsorbed

The quantity of gas (n_) remaining in the combined manifold
and sample tube volume (V_ + V) can be calculated from
the universal gas law. This is complicated by the vertical
temperature profile in the sample tube, one portion essential-
ly being at ambient temperature and another portion being at
the temperature of the cold bath typically LN, .

The calculation of n_is made traceable by a free-space mea-
surement typically performed prior to the analysis and which
characterizes the sample tube volume in regard to ‘warm’
and ‘cold’ volumes. Once n_is determined, the quantity of
gas adsorbed by the sample at P is

This establishes the point on the isotherm (P, n_,). Valve 7
closes and valve 3 opens, and the manifold is charged to a
pressure slightly higher than P_ after which the dosing and
quilibration processes are repeated.

This cycle continues until the analysis pressure is near satu-
ration pressure at which time the complete adsorption iso-
therm has been developed. The desorption isotherm is mea-
sured by a step-wise reduction in pressure until the a low
pressure over the sample is achieved. At that point, most of
the physically adsorbed molecules will have been desorbed
from the surface.

Type IV isotherm:

Nitrogen adsorption
and desorption on
amorphous silica
alumina.

Quantity adsorbed, std. cm,/g
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Adsorption *
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X-ray and Neutron Reflectivity

Detector

Diffused reflections specularly reflected
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Refracted wave

Fig. 1. Reflection and refraction of X-rays on material
surface.
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Reflectivity from Multiple Layers
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GIXRD: Grazing Incidence  G|XRD
X-ray Diffraction

GISAXS: Grazing Incidence
Small Angle X-ray Scattering

In GISAXS, the angle a; is very small (<0.5°) for GISAXS, X-ray penetrates the sample
and reflection is very strong, beam stopper is required to protect detector.
In our experiment, a; =1.8°, beam intensity is reduced dramatically, no stopper.



Grazing Incidence Small Angle X-ray Scattering (GISAXS)

Principle

2D image around direct beam:
Fourier transform of objects

* Shape

* Sizes

+ Size distributions
» Particle-particle
pair correlation function

Standard 3D growth (Volmer-Weber) O LT

Example : 20 A Ag/MgO(001) 500K

Q1010 Q;[110]

Anisotropic islands:
truncated square pyramids
with (111) facets

Gilles Renaud et al. Science 300, 1416 (2003)



Scattering Intensity
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Small-Angle Light, Neutron, and X-ray Scattering for Osmotic Compressibility

100 ¢
“Thermodynamic Limit” 10 ,__
At large sizes contrast arises from g |k
thermally driven fluctuations in density o 3
that are opposed by the osmotic .
compressibility, (dp/dP); The observed g 01
intensity I(q=>0) ~ kT/ (dp/dP)t =
Here P is IT the osmotic pressure which 0.01 _
can be expressed using the virial
expansion so that the first derivative is
the second virial coefficient A,. Low-q 0.001
scattering can measure the 0.001
thermodynamic interaction of particles.
Large size Small size

(271/0.001) A = 600 nm (2n/1) A=0.6 nm
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Experimental Thermodynamics (30 common techniques)
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